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1. Introduction
Rules and frames are two contras':ng schemes for representing different kinds of

knowledge. Rules are appropriate for representing logical implications, or for
associating actions with conditions under which the action should be taken. In this
paper, we focus our discussion on the second kind of rules (i.e., action rules). Frames
(or semantic nets) are appropriate for defining terms and for describing objects and the
taxonomic class/membership relationships among them. An important reasoning
capability of frame systems with well-defined semantics is that they can infer the
class/membership relationships between frames based on their definitions [Brachman
85, Moser 83].

Since the strengths and weaknesses of rules and frames are complementary to each
other, a system that integrates the two will benefit from the advantages of both
.echniques. This paper describes a hybrid architecture called classification-based
programming, which extends the production system architecture using automatic
classification capabilities within frame representations. In doing so, the system enhances
the power of a pattern matcher in a production system from symbolic matching to
semantic matching, organizes rules into rule classes based on their functionalities, and
infers the various relationships among rules that facilitates explicit representation of the
control knowledge.

Section 2 briefly reviews the existing AI programming architectures related to our
work. Section 3 describes the architecture of our classification-based programming
paradigm. Section 4 describes our implementation of the architecture and a small
expert system built utilizing it. Section 5 discusses related research issues and our plans
for addressing them.

2. Problems with existing Al programming architectures
Rule-based systems have encountered a number of criticisms. First, rules are

often used to implicitly represent contexts, control knowledge, and structural knowledge
[Clancey 83, Aikins 80]. Second, the meaning of the terminology used by the rules is

often ill-defined [Swartout and Neches 86], Third, it is difficult to structure large rule
sets [Fikes and Kehler 85]. These problems make rule-based systems limited in
explaining their reasoning and costly to maintain [Swartout 83, Neches, et al. 85].

A major distinction among the frame-based systems is the semantics associated
with the slots. KRL [Bobrow 77], FRL [Roberts 77], and FRAIL [Charniak 83] are early
frame-based systems that have been criticized for lacking well-defined semantics [Woods
75, Brachman 831. As a result, KL-ONE [Brachman 85] and and its descendant NIKL
[Moser 831 have well-defined semantics for concepts - frames that represent unary

predicates (i.e., one-place predicates). We will refer to the earlier frame systems that
represent only primitive concepts as weak semantic frame-based systems, and the latter
ones that supports both primitive and defined concepts as strong semantic frame-based
systems.
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The major advantage of a strong semantic frame-based system is its special-
purpose reasoner: the classifier [Schmolze and Lipkis 83]. The classifier positions a
defined concept in the subsumption lattice such that (i) it is below all concepts that
subsume it, and (ii) it is above all the concepts that it subsumes. Thus, the taxonomies
of strong-semantic frame-based systems are inferred by the system, not specified by
users as with weak-semantic frame-based systems.

Although frame-based systems provide a convenient way to organize data objects
in a class taxonomy and to inherit their properties from more general classes, they are
weak in representing and using rule knowledge. Early frame-based systems used
procedural attachment (i.e., demons) to deal with limited classes of rules, but these do
not provide a general control structure.

KEE. ART, and Knowledge Craft are hybrid systems that combine weak-semantic
frame-based knowledge representation with a rule language. These systems
demonstratcd some advantages of integrating the frame representation and the rule
language [Fikes and Kehler 85]. The friames provide a rich structural language for
describing the objects referenced in the rules. Frame taxonomies can be used to
partition, index, and organize a system's production rules. Since these systems do not
distinguish between primitive concepts and defined concepts, they can not further
integrate the automatic classification components of strong-semantic frame
representation with rule-based systems.

IRYPTON [Brachman, Fikes, and Levesque 83], K.-TWO [Vilain 84], and BACK
[Von Luck 85] are three strong-semantic hybrid architectures. All of them have two

components for representing two different kinds of knowledge: terminological and
assertional. Because strong-sem antic frame languages are appropriate for representing
and reasoning about term definitions, they serve as the terminological language of all
three systems. They differ, however, in their choices of an assertional language.

The realizer is an important special-purpose reasoner that both Kb-TWO and
BACK use for "gluing" assertions and term definitions together. The most specific
generalization (MSG) of an instance is the intersection of all concepts that it belongs to.
By computing and recording the MSG of an instance, the system can quickly identify all
the terminological concepts that describe an instance. No effort, however, has been
made to integrate the KL-TWO or BACK realizers with the pattern matcher of rule-
based systems.

KL-TWO provides a noticer mechanism for users to define demons that get
executed when the conditions are met [Vilain 84]. Even though the noticer has
improved the expressive power and control of demons, it lacks a global control
mechanism like the recognize-act cycle of production systems. Moreover, the control
knowledge is represented in ways that are difficult to share, explain, and reason about.
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3. The classification-based programming architecture
The goal of the classification-based programming paradigm is to represent rule

knowledge within the framework of strong-semantic frame representations. By doing
so, we can use the automatic classification component of the frame system to extend the
rule system's capability in pattern matching, in organizing rules, in controlling rules,
and in resolving conflicts.

3.1. The CONSUL Mapper
The work done in the CONSUL system [Mark 80, Mark 811 is the first attempt to

integrate rules into strong-semantic frame-based systems. The major contribution of
CONSUL's rule-based inference, which is built in NIKL, are the following:

1. It uses the classifer to match data with the rules' LHS.

2. It uses the taxonomic structure of the knowledge base to infer the specificity
among rules.

3. It organizes and selects rules based on the structure of the knowledge base.2

The function of CONSUL rules is strictly to create new descriptions that redescribe a
user request until the system can understand it and respond to it. Although the
paradigm can be used for any applications, its. inference architecture and its RHS
actions are not as general as that of a production system. For example, the conflict set
is always the set of rules that can redesicribe a given description. Because of this,
CONSUL does not need to employ the conflict resolution strategies of production
system for rule selection. Moreover, because of the limitation of the underlying
knowledge representation system (i.e., NIKL), CONSUL does not distinguish
terminological knowlege (e.g., terms referred by the rules' LHS and RHS) from
assertional knowledge (e.g., input data that match the rules' LIHS and the descriptions
created by the rules' RHS).

3.2. An architecture of the classification-based production system
Figure 3-1 shows the general architecture of our classification-based production

system. Rules and facts are stored in a rule base and a facts database, respectively.
The architecture has four major processes: the rule base organizer, the facts manager,
the conflict set manager, and the rule interpreter. The rule base organizer translates
the user's definitions about rule classes and individual rules into their internal
representations and organizes them into a rule taxonomy in the rule base. The facts
manager updates the facts database whenever the factual knowledge is modified. An
important component of the facts manager is a semantic pattern matcher that detects
changes to the conflict set that arises from the changes to the assertional data. Based
on these conflict set changes, the conflict set manager constantly updates the conflict
set. The rule interpreter selects productions from the conflict set and executes their

2This part of CONSUL work has not been published or fully implemented.
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Figure 3-1: The architecture of the classification-based production system

right-hand side actions. Two kinds of control knowledge are stored in the rule base:
one for the conflict set manager to filter instantiations, and one for the rule interpreter
to select instantiations.

Like the conventional production system, the select and execute operations of the
rule interpreter repeat until the coxiflict set is empty or a stop command is executed.
The right-hand side of a production often modifies the facts database. Therefore,
executing a production usually triggers the semantic pattern matcher, which in turn
causes the conflict set to be updated. As we will see in the following discussion, the
architecture extends the conventional rule-based paradigm through the use of the
classification capabilities of the strong semantic frame-based systems.

3.3. Representing productions in frames
Before we can take advantage of the inferential power of the classifier and the

realizer in rule-based :,stems, we need to represent knowledge about rules in a fashion
so that the frame system can reason about it. A production rule has two major
components: a left-hand side (LHS) that describes its triggering condition, and a right-
hand side (RHS) that contains the actions to be executed when the triggering condition
is met. In the classification-based production system, the LHS of a production is
constructed using the terminological language, and the RHS has a dual representation: a
declarative one that explicitly captures the RHS actions in frame representation and a
procedural one that can be executed by the rule interpreter.



3.3.1. The Left-hand Side
The left-hand sides (LHS's) of productions are constructed using terminological

concepts. The function of the rule's LIS condition and the terminological concepts are
similar because both of them specify a set of data. Therefore, we can use concepts in
the terminological space to construct the LHS of a rule. The simplest way to do this is
to translate the LHS into a concept definition, then define a rule whose LHS slot simply
points to the concept. For example, the LIIS condition of rule R1 shown in Figure 3-3
"X is a discrepancy whose status is inactive" can be represented as the following NIKL
concept definition:

(defconcept inactive-discrepancy (Specializes discrepancy)
(restriction status (VR inactive)) ).

Often the LHS of a rule describes certain complex relationships among several
different kinds of data objects. In the conventional production system, this complex
condition is represented by several condition elements. In the classification-based
production system, similar complex conditions can be represented by a concept whose
meaning is specified in terms of its relationships to other concepts. For example, the
LHS of a rule in [Brownston et. al 85, p. 122 can be stated in English:

IF there is an active goal to be on an object, ol
and the object o1 is at location p
and the monkey is at location p holding some object, not nil

THEN ...

An OPS5 representation and a NIKL representation of the LHS are shown in Figure
3-2. The NIKL concept not-to-hold-goal represents the above LHS condition. Although
the NIKL representation seems more complex than the OPS5 approach, the former
captures more knowledge than the latter does (e.g., the fact that the At attribute of
Phys-obj and Monkey are inherited from Real-world-object is not modeled in
OPS5 LHS).

Since OPS5 and NIICL can be viewed, respectively, as typical programming
languages for conventional rule-based systems and for classification-based systems, this
example illustrates several differences between the conventional representation of the
LHS and the classification-based representation:

1. Rather than capturing the relationships between objects by sharing variables
across several condition elements, the relationships are explicitly captured
using role restrnctions (e.g., the Subject of Not-to-hold-goal is a
Full-handed-monkey) and constraints (e.g., the Subject and the Object
of the goal are At the same Location) in the classification-based approach.

2. The conventional LHS could have several free variables, while the LHS in
our approach contains only one free variable and, hence, is always centered
around one class of objects.

3. The classification-based approach reduces maintenance cost and facilitates
explanation by sharing knowledge. For instance, the Full-handed-monkey



OPS5:
(goal Istatus active Ttype on Tobject-name <o1>)
(phys-object Iname <o1> tat <p> )
(monkey Tat <p> Iholds <> nil)

NIKL:
(DEFCONCEPT real-world-object PRIMITIVE)
(DEFROLE at (DOMAIN real-world-obj ect) (RANGE location))

(DEFCONCEPT phys-object PRIMITIVE (SPECIALIZES real-world-object)

(DEFCONCEPT animal PRIMITIVE (SPECIALIZES real-world-object))
(DEFROLE hold-obj (DOMAIN animal) (RANGE real-world-object))
(DEFCONCEPT monkey PRIMITIVE (SPECIALIZES animal))
(DEFCONCEPT full-handed-monkey (SPECIALIZES monkey)

(restriction hold-obj (MIN 1)) )

(DEFCONCEPT goal PRIMITIVE)
(DEFROLE status (DOMAIN goal) (RANGE goal-status))
(DEFROLE type (DOMAIN goal) (RANGE goal-type))
(DEFROLE object (DOMAIN goal) (RANGE real-world-object))
(DEFROLE subj ect (DOMAIN goal) (RANGE animal))

(DEFCONCEPT not-to-hold-goal (SPECIALIZES goal)
(RESTRICTION status (VR active))
(RESTRICTION type (VR on))
(RESTRICTION subject (VR full-handed-monkey))
(= (object at) (subject at))

Figure 3-2: The OPS5 an NICL representation of a LHS

concept in Figure 3-2 can be reused in other LHS conditions referencing the
monkey holding something.

4. Patterns are classified into a subsumption lattice in a classification-base"
system. As we will see below, this enables classifying rules, performing
semantic matching, determining "more specific than" relationships among
rules, and performing conflict resolution in the recognize-act cycle.

3.4. The rule base organizer
Most rule systems either provide no mechanism for organizing rules or ask the

user to specify t1 rule classes each rule belongs to. The major functions of our rule
base organizer are to construct a taxonomy of rule classes and to group the rules into
those classes for the user. It does so by representing the knowledge for organizing rules
explicitly, and using the classification capabilities of the strong-semantic frame systems
to classify rules and rule classes. Therefore, the rule base organizer encourages explicit
representation of a rule set's organization.
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Rules can be grouped by their triggering conditions, the goal of their actions, their
conflict resolution strategies [Neches 871, or other criteria. In order to classify rules into
rule classes, the system must have appropriate slots that relate the rules and rule classes
to the classification criteria, and an appropriate knowledge base that captures the
meaning and the abstraction of the fillers to the slots. For example, a rule class
containing all rules that are triggered by goal states in a search problem can be defined
by the following NIKL concept definition:

(DEFCONCEPT Detect-goal-state-rule-class (SPECIALIZES Production)
(RESTRICTION LHS (VR Goal-state)))

where the role LHS relates a production to its left-hand side.

The maintenance of a large unorganized rule base is costly because it is difficult to
locate a particular rule, to find rules whose tasks are similar or related to a given rule,
or to activate only a subset of rules for testing or debugging. Thus, organizing rules in
a way meaningful to the rule base developer helps in retrieving, browsing, and testing
the rule base. With the rule organization, control knowledge needs to be described only
at the abstract level of rule classes. Each rule automatically inherits the control
knowledge from all its classes. Moreover, because the rule classes themselves are
organized into a superclass/subclass lattice, the control knowledge of a more specific
class could override that of a general class. Ve will return to this point in section 3.0.

3.5. The semantic pattern matcher
Representing the LHS by using terminological concepts enables the production

system to extend its pattern matching capabilities from symbolic matching to semantic
matching by using the realizer. Semantic matching extends symbolic matching in that
it utilizes the terminological knowledge for pattern matching. Although the
terminological knowledge can be represented as a large set of rules that infer the
membership relationships among classes (i.e., terms), representing them declaratively
has two major advantages. First, it is computationally more efficient than triggering a
long chain of rules, because most of the subsumption relationship has been precomputed
by the classifier. Second, it is easier to modify, maintain, and understand the
knowledge because the sufficient and the necessary conditions of a class are represented
as a unit rather than as a set of independent rules.

An example of the semantic pattern matcher is matching class variables (as
opposed to pattern variables). Early languages (e.g., PSG [Newell 751) had class
variables; later languages moved away from this for efficiency reasons. A classifier does

match efficiently, and also deas with recognizing when an item is a class member even
when it has not been explicitly declared as such.

To illustrate the advantage of semantic pattern matcher, let's consider rule RI in
Figure 3-3. Suppose we have an expert system that detects problematic situations
(called discrepancies) and attaches notes to them. A discrepancy could be in exactly one
of the four states: Unsolved, Pending, Explained, or Solved. These states are
further grouped into two categories. An Active discrepancy is either Unsolved or



8

RI: IF X is a DISCREPANCY whose status is INACTIVE,
THEN make the status of the NOTE attached to X INACTIVE.

R2: IF X is a DISCREPANCY whose status is SOLVED,
THEN remove the NOTE attached to X.

Figure 3-3: The example of a specific rule overrides a general rule

Pending. An Inactive discrepancy is either Explained or Solved.

Figure 3-3 shows two rules in the system that manages the notes when the status
of their associated discrepancies have been changed. For readability, frames are printed
in bold uppercase and slot names are printed in ita!ic lowercase.

Assume that the status of a discrepancy has been changed to Explained. A
symbolic pattern matcher would not find a match with the LHS of R1, because the
symbol Explained does not correspond to the symbol Inactive. However, a pattern
matcher utilizing a realizer would find a match with Ri's LHS because the
terminological knowledge (i.e., that the Explained status is a kind of Inactive status)
would allow it to infer that an explained discrepancy is also an inactive discrepancy.
This example shows that the inferential power of the conventional pattern matcher can
be greatly enhanced by the realizer in a classification-based production system.

3.6. Representing the control knowledge
The architecture facilitates the representation of control knowledge in two ways:

(1) control knowledge can be described at the abstract level of rule classes, and (2) the
architecture infers the specificity of rules. Control knowledge includes strategies for
filtering certain instantiations from the conflict set, and the conflict resolution strategy
used by the rule interpreter.

Describing control strategy at the rule class enables us to explicitly state the
criteria for using the strategy. Conflict resolution strategy is one kind of control
knowledge that has been associated with rule classes [Neches 87]. Our architecture
extends Neches' approach by inferring the rule classes of each rule, rather than having
the user specify them.

Given producticn rules R1 and R2, we will call rule R1 more specific than rule
R2 if the set of Ri's rule classes properly contains the set of R2's rule classes.3

Specificity of rules is useful both for conflict resolution and for filtering rules.
Specificity is a classic conflict-resolution heuristic used by languages from OPS through

3Because the classifier has pre-computed the membership relationships between all rules and rule
classes, the "more specific than" relation betwen two rules can be computed by a simple subset test.



ART for selecting productions [McDermott 78]. Our approach gives specificity a
definition based on semantics, where previously it was definable only in terms of
structural correlates like number of condition clauses.

A useful control strategy for the conflict set manager is to include in the conflict
set only the most specific .ule in a rule class for each instance (i.e., filter out other
general rules). Applications using this strategy can fcrmulate sets of general-purpose
productions designed to respond to situations using broad-coverage procedures, and can
also formulate additional special-purpose productions that invoke procedures tailored to
particular situations. This control strategy an be implemented in classification-based
programming by associating the most-specific-rule strategy with the desirable rule
classes. 4 This is illustrated in the following example.

Let's consider the two rules about discrepancy in Figure 3-3. Suppose both Ri and
R2 belongs to the class of rules that manage notes about discrepancies. By associating
the most-specific-rule strategy with the rule class, we specify that only one rule in the
class can be triggered by a discrepancy. Now, suppose a previously active discrepancy
D1 is solved. Conventional conflict-resolution algorithms can not detect that the rule
R2 is more specific than R1. In classification-based programming. because the conflict
set manager could infer that R2 is more specific than R1, it could therefore prefer R2.

4. The implementation of a classification-based production system
architecture

Our current implementation of the classification-based production systems
architecture is built on top of NIK L [Kaczmarek 86, Robins 86], a IL-ONE-style
knowledge representation language. Because NIKL does not have an assertional
cc mponent, we model instances as primitive concepts subsumed under Instance. The
NIKL classifier is used both by the rule base organizer and the semantic pattern
matcher of the system.

A NII concept has three kinds of slots: Roles, Data, and Idata. The roles are
KL-ONrE style definitional slots. Data and Idata both link concepts to non-definitional
properties. Data is local to the concept, while Idata is inherited through the
subsumption hierarchy.

4.1. Representing productions
A production rule is represented as a subconcept of the concept Production with

two roles (i.e., LHS and RHS-task) and two nondefinitional slots (i.e., Bindings and
RHS-body). The former two slots are used by the rule base organizer to classify rules
into the rule taxonomy; the latter two slots are used by the rule interpreter to execute
the RHS actions. The LHS of a production is a concept that intentionally defines the

4 [Neches, et al. 85] desc,'ibe a system which uses a classifier to prefer more-specific over more-general
rules. However, that system does not exhibit a production-rule architecture.
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Another issue is that the dual representations of the right-hand side are treated
independently at present. It is the responsibility of the knowledge base developer to
make the two representation consistent with each other. Hence, a facility that aids the
user in formulating a declarative RHS that is consistent with the procedural RHS would
be very useful.

6. Summary
We have presented the general architecture and a prototype implementation of the

classification-based programming paradigm. Our main objective is to extend the
benefits of classification capabilities in strong-semantic frame systems to the developers
and users of rule-based systems. By representing the left-hand sides and the
functionalities of the right-hand sides in the terminological spaces, the p,--adigm
improves conventional rule-based programming in several aspects. The ^,attern-
matching operation is based on the terminological definitions of the symbols, not the
symbols themselves. Rules and rule classes are organized according to their declarative
representation. Conf ,I knowledge that uses the subsumption relationships among rules
anmd rule classes can be specified at the abstract level of rule classes. The paradigm
encourages the development of a rich and cohercnt knowledge base about conditions
and actions, which i5 shared across rules; this can be used for other important tasks,
such as knowledge acquisition and explanation generation.
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